extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC24).1C22 = D12.4D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).1C2^2 | 288,459 |
(C3xC24).2C22 = Dic12:S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).2C2^2 | 288,449 |
(C3xC24).3C22 = C3xC8.D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).3C2^2 | 288,680 |
(C3xC24).4C22 = C24.3D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4- | (C3xC24).4C2^2 | 288,448 |
(C3xC24).5C22 = C24.5D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).5C2^2 | 288,766 |
(C3xC24).6C22 = C32:2D16 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).6C2^2 | 288,193 |
(C3xC24).7C22 = C3:D48 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4+ | (C3xC24).7C2^2 | 288,194 |
(C3xC24).8C22 = D24.S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).8C2^2 | 288,195 |
(C3xC24).9C22 = C32:3SD32 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4- | (C3xC24).9C2^2 | 288,196 |
(C3xC24).10C22 = C24.49D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4+ | (C3xC24).10C2^2 | 288,197 |
(C3xC24).11C22 = C32:2Q32 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).11C2^2 | 288,198 |
(C3xC24).12C22 = C32:3Q32 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4- | (C3xC24).12C2^2 | 288,199 |
(C3xC24).13C22 = C3xC3:D16 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).13C2^2 | 288,260 |
(C3xC24).14C22 = C3xD8.S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).14C2^2 | 288,261 |
(C3xC24).15C22 = C3xC8.6D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).15C2^2 | 288,262 |
(C3xC24).16C22 = C3xC3:Q32 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).16C2^2 | 288,263 |
(C3xC24).17C22 = C32:7D16 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).17C2^2 | 288,301 |
(C3xC24).18C22 = C32:8SD32 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).18C2^2 | 288,302 |
(C3xC24).19C22 = C32:10SD32 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).19C2^2 | 288,303 |
(C3xC24).20C22 = C32:7Q32 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 288 | | (C3xC24).20C2^2 | 288,304 |
(C3xC24).21C22 = S3xDic12 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4- | (C3xC24).21C2^2 | 288,447 |
(C3xC24).22C22 = C24.23D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).22C2^2 | 288,450 |
(C3xC24).23C22 = D24:7S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4- | (C3xC24).23C2^2 | 288,455 |
(C3xC24).24C22 = D6.3D12 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4+ | (C3xC24).24C2^2 | 288,456 |
(C3xC24).25C22 = D24:5S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).25C2^2 | 288,458 |
(C3xC24).26C22 = C3xD8:3S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).26C2^2 | 288,683 |
(C3xC24).27C22 = C3xS3xQ16 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).27C2^2 | 288,688 |
(C3xC24).28C22 = C3xD24:C2 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).28C2^2 | 288,690 |
(C3xC24).29C22 = C24.26D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).29C2^2 | 288,769 |
(C3xC24).30C22 = Q16xC3:S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).30C2^2 | 288,774 |
(C3xC24).31C22 = C24.28D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).31C2^2 | 288,776 |
(C3xC24).32C22 = C3xD4.D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).32C2^2 | 288,686 |
(C3xC24).33C22 = C24.32D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).33C2^2 | 288,772 |
(C3xC24).34C22 = C24.35D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).34C2^2 | 288,775 |
(C3xC24).35C22 = C3xQ16:S3 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).35C2^2 | 288,689 |
(C3xC24).36C22 = D6.1D12 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).36C2^2 | 288,454 |
(C3xC24).37C22 = D12.2D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).37C2^2 | 288,457 |
(C3xC24).38C22 = C3xQ8.7D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).38C2^2 | 288,687 |
(C3xC24).39C22 = C24.40D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).39C2^2 | 288,773 |
(C3xC24).40C22 = C32xC8.C22 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).40C2^2 | 288,834 |
(C3xC24).41C22 = S3xC3:C16 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).41C2^2 | 288,189 |
(C3xC24).42C22 = C24.60D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).42C2^2 | 288,190 |
(C3xC24).43C22 = C24.61D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 96 | 4 | (C3xC24).43C2^2 | 288,191 |
(C3xC24).44C22 = C24.62D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).44C2^2 | 288,192 |
(C3xC24).45C22 = C24.63D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).45C2^2 | 288,451 |
(C3xC24).46C22 = C24.64D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).46C2^2 | 288,452 |
(C3xC24).47C22 = C24.D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).47C2^2 | 288,453 |
(C3xC24).48C22 = C3xD12.C4 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 48 | 4 | (C3xC24).48C2^2 | 288,678 |
(C3xC24).49C22 = C24.47D6 | φ: C22/C1 → C22 ⊆ Aut C3xC24 | 144 | | (C3xC24).49C2^2 | 288,764 |
(C3xC24).50C22 = C32:5D16 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).50C2^2 | 288,274 |
(C3xC24).51C22 = C6.D24 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).51C2^2 | 288,275 |
(C3xC24).52C22 = C32:5Q32 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 288 | | (C3xC24).52C2^2 | 288,276 |
(C3xC24).53C22 = C2xC32:5Q16 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 288 | | (C3xC24).53C2^2 | 288,762 |
(C3xC24).54C22 = C3xD48 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 96 | 2 | (C3xC24).54C2^2 | 288,233 |
(C3xC24).55C22 = C3xC48:C2 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 96 | 2 | (C3xC24).55C2^2 | 288,234 |
(C3xC24).56C22 = C3xDic24 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 96 | 2 | (C3xC24).56C2^2 | 288,235 |
(C3xC24).57C22 = C3xC4oD24 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 48 | 2 | (C3xC24).57C2^2 | 288,675 |
(C3xC24).58C22 = C6xDic12 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 96 | | (C3xC24).58C2^2 | 288,676 |
(C3xC24).59C22 = C24.78D6 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).59C2^2 | 288,761 |
(C3xC24).60C22 = C32xD16 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).60C2^2 | 288,329 |
(C3xC24).61C22 = C32xSD32 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).61C2^2 | 288,330 |
(C3xC24).62C22 = C32xQ32 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 288 | | (C3xC24).62C2^2 | 288,331 |
(C3xC24).63C22 = Q16xC3xC6 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 288 | | (C3xC24).63C2^2 | 288,831 |
(C3xC24).64C22 = S3xC48 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 96 | 2 | (C3xC24).64C2^2 | 288,231 |
(C3xC24).65C22 = C3xD6.C8 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 96 | 2 | (C3xC24).65C2^2 | 288,232 |
(C3xC24).66C22 = C6xC3:C16 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 96 | | (C3xC24).66C2^2 | 288,245 |
(C3xC24).67C22 = C3xC12.C8 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 48 | 2 | (C3xC24).67C2^2 | 288,246 |
(C3xC24).68C22 = C16xC3:S3 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).68C2^2 | 288,272 |
(C3xC24).69C22 = C48:S3 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).69C2^2 | 288,273 |
(C3xC24).70C22 = C2xC24.S3 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 288 | | (C3xC24).70C2^2 | 288,286 |
(C3xC24).71C22 = C24.94D6 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).71C2^2 | 288,287 |
(C3xC24).72C22 = C24.95D6 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).72C2^2 | 288,758 |
(C3xC24).73C22 = C3xC8oD12 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 48 | 2 | (C3xC24).73C2^2 | 288,672 |
(C3xC24).74C22 = C32xC4oD8 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).74C2^2 | 288,832 |
(C3xC24).75C22 = C32xC8oD4 | φ: C22/C2 → C2 ⊆ Aut C3xC24 | 144 | | (C3xC24).75C2^2 | 288,828 |
(C3xC24).76C22 = C32xM5(2) | central extension (φ=1) | 144 | | (C3xC24).76C2^2 | 288,328 |